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Abstract—This study introduces innovative advancements in
the application of Generative Adversarial Networks (GANSs) in
the realm of wireless communications, expanding upon the foun-
dational concepts outlined in existing literature. Our research
deepens the understanding of GANs in adversarial settings and
paves the way for more advanced signal spoofing methods using
GANSs, to generate and transmit synthetic signals that cannot
be reliably distinguished from intended signals. Highlighting
our distinctive approach, we broke away from the conventional
method of using single-carrier waveforms and instead introduced
a pioneering technique that involves modeling multicarrier wave-
forms (UFMC, OFDM, F-OFDM, GFDM, FBMC). This depar-
ture from the traditional approach underscores the innovative
nature of our research, as we ventured into uncharted territory
by embracing the complexities of multicarrier waveform, a
departure from the standard practice in the field. The adversarial
model used comprises a transmitter-receiver pair, collaboratively
orchestrating a mini-max game to optimize signal spoofing. This
research demonstrates increased efficiency and reduced latency
in signal spoofing, highlighting the potential of GANs in complex
network typologies and mobility patterns.

Index Terms—Conditional generative adversarial networks,
deep convolutional neural networks,spoofing attack, multicarrier
waveform.

I. INTRODUCTION

Wireless communications, being characterized by its open
and shared nature, is intrinsically susceptible to adversarial
attacks. The very ubiquity and accessibility that make wireless
communication so vital in today’s world also expose it to
potential threats. One of the common tactics employed by
adversaries in wireless signal spoofing involves capturing
a legitimate transmission and replaying it at a later time,
often with adjustments to the transmission power. While this
approach can represent various features in the signal at a high
level, it may fall short of reliably mimicking combined wave-
form characteristics, channel conditions, and device-specific
effects.

In this context, machine learning has gained prominence
in the field of wireless communications, finding applications
in various aspects such as spectrum sensing [1] and modula-
tion recognition [2]. However, the majority of existing ML
systems operate under the assumption that data originates
from regular users and is independently generated from the
same distribution [1]. While some ML algorithms can handle
small dense noises and large sparse outliers, a limited number

of them address adversarial noises intentionally crafted by
individuals with knowledge of the ML system and its data.
These adversaries introduce meticulously crafted noises or
manipulate the dataset to undermine or deceive the learning
system, posing a significant threat, especially in security and
safety-critical domains [1].

Generative Adversarial Networks (GANs) have gained at-
tention for their ability to generate perturbations and realistic
examples in various problem domains since their introduction
in 2014 [3]. In wireless communications, most GAN research
has concentrated on single carrier signals, addressing applica-
tions such as data augmentation, wireless channel modeling,
physical layer design, adversarial attacks, and anomaly detec-
tion [4].

However, the emergence of filtered multicarrier waveforms
in wireless communication standards has introduced complex-
ity and diversity into the field. Unlike single-carrier systems,
filtered multicarrier systems involve multiple carriers with
specific filtering requirements and inter-carrier relationships.
This complexity demands more sophisticated ML models,
increased computational resources, and the need for models to
generalize well to variations in filtered multicarrier systems.
Addressing these challenges requires careful consideration of
model architectures, loss functions, training strategies, and
the incorporation of domain knowledge and signal processing
expertise into the ML framework.

Additionally, in the evolving landscape of machine learning,
there has been a growing emphasis on the challenge of
training resilient models under constraints of limited datasets.
Traditional remedies, such as data duplication, often lead
to over-fitting, compromising the model’s ability to general-
ize effectively. To address this ongoing dilemma and push
the boundaries of what’s possible, we propose a pioneering
solution: the utilization of Generative Adversarial Networks
(GANS5) to generate synthetic signals. These synthetic signals
are not mere replicas; they are authentically distinct from
the original signals, tailored explicitly for multi-signal carrier
waveforms rather than single-carrier waveforms. This marks a
significant departure from established practices and represents
the first application of GANs in this domain, opening new
avenues for improved model training in signal processing
applications.

In this paper, we embark on a groundbreaking mission
that extends beyond the traditional boundaries of machine
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learning in wireless security. Our objective is nothing short
of revolutionary—to harness the power of GANs from an
adversarial standpoint. We aim to train a GAN to generate
wireless signals that are practically indistinguishable from
genuine transmissions.

This study aims to explore the potential of GAN-based mod-
eling for base-band filtered multicarrier waveforms directly
from raw I/Q components of quadrature phase shift keying
(QPSK) data. The focus of the investigation includes per-
sub-carrier filtered multicarriers (e.g., filter bank multicarrier
"FBMC” and generalized frequency division multiplexing
”GFDM”) and per-sub-band filtered multicarriers (e.g., uni-
versal filtered multicarrier "UFMC” and filtered orthogonal
frequency division multiplexing "F-OFDM”). The primary
objective is to create an evasion attack where an adversary
attempts to fool a machine learning algorithm, in our case a
CNN classifier (Convolutional Neural Network), by generating
synthetic waveforms that are statistically analogous to legiti-
mate ones. The CNN must navigate increasingly sophisticated
adversarial tactics to discern between real and fake signals.
This research demonstrates the practicality of this proposal
and provides a foundation for comprehensive and complete
datasets.

The forthcoming sections of this paper will delve into the
intricate technical details of our approach, the experimental
framework we employed, and the results we achieved. Through
this exploration, we aim to shed light on the transformative
potential of GANs in redefining the landscape of wireless
security. The paper’s structure includes a brief description of
the investigated waveforms, details on the proposed GAN
model, training steps, simulation parameters, discussions on
findings, and concluding remarks with future perspectives in
subsequent sections.

II. SIGNAL THEORY

Wireless communication systems are inherently challenged
by phenomena like frequency selectivity, interference, and
fading within propagation channels. Frequency selectivity
refers to the differential treatment of various frequencies in
a signal due to path loss, shadowing, and multi-path, leading
to certain frequencies suffering more attenuation and phase
shifts than others. Interference, both from within the network
(like co-channel and adjacent channel interference) and from
external sources, further complicates the signal transmission
and reception process. Fading, caused by the constructive and
destructive superposition of the multipath signals, leads to
rapid fluctuations in the amplitude and phase of the received
signal.

A. Multicarrier Modulation (MCM)

Multicarrier Modulation (MCM) is a technique that has been
extensively adopted to counter these challenges. It involves
transmitting data over multiple carrier frequencies, thus di-
viding the overall available bandwidth into numerous smaller,
orthogonal subchannels. This division is pivotal in managing

the intricacies of wireless channels and enhancing spectral
efficiency and communication reliability. In MCM, the total
available bandwidth is strategically subdivided into multiple
smaller subchannels, with each subchannel functioning as an
individual carrier for data transmission. This subdivision plays
a crucial role in mitigating the impact of frequency-selective
fading, a phenomenon where different frequencies in a signal
are affected differently during transmission. By dispersing data
transmission across various frequencies, MCM ensures that
even if some subchannels are compromised due to fading,
others continue to transmit effectively, thus preserving the
overall integrity of the data communication. Furthermore, data
symbols, which represent the basic units of digital information,
are modulated onto these subcarriers. Each symbol is meticu-
lously mapped onto a specific subcarrier and allocated specific
time intervals, enhancing the modulation strategy’s adaptabil-
ity to suit diverse communication scenarios. The temporal and
spectral distribution of these symbols across the subchannels
facilitates a flexible and efficient approach to data transmis-
sion. An essential aspect of MCM is the encoding of data using
In-phase (I) and Quadrature (Q) components, wherein each
subcarrier is represented by a complex waveform that includes
both I and Q parts. This encoding mechanism optimizes the
information transmission process, making efficient use of the
available bandwidth. In some implementations of MCM, a
binary encoding method that utilizes just 2 bits is adopted,
striking a crucial balance between achieving high spectral
efficiency and maintaining manageable signal complexity. This
balanced approach underscores the innovative nature of MCM
in handling the challenges of modern wireless communication.

In the realm of MCM, several key techniques have been
developed, each addressing specific aspects of wireless com-
munication challenges. Orthogonal Frequency Division Mul-
tiplexing (OFDM) is a widely embraced technique, renowned
for its subcarrier orthogonality. OFDM excels in high data rate
applications, demonstrating resilience to multipath fading and
spectral leakage, making it a mainstay in various communi-
cation systems. Addressing some of OFDM’s limitations, par-
ticularly concerning out-of-band radiation, is the Filter Bank
Multicarrier (FBMC) technique. FBMC utilizes sophisticated
filtering for each subcarrier, significantly improving spectral
containment and minimizing inter-carrier interference, thus
enhancing the overall spectral efficiency of the system. An-
other innovative approach is Generalized Frequency Division
Multiplexing (GFDM), which introduces subsymbols and cir-
cular filtering. This method strikes a balance between spectral
efficiency and receiver complexity, marking it as a contem-
porary advancement in MCM. Expanding the spectrum of
MCM techniques are Universal Filtered Multicarrier (UFMC)
and Filtered-OFDM (F-OFDM). UFMC, inspired by resource
block allocation in 4G systems, proposes filtering groups of
subcarriers, known as subbands, offering moderate out-of-
band emissions and circumventing some drawbacks of FBMC.
On the other hand, F-OFDM uses longer filters compared
to UFMC, thus presenting better spectral containment, albeit
with a tendency towards increased inter-symbol interference.
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These diverse techniques under the MCM umbrella each con-
tribute uniquely to tackling the intricate challenges in wireless
communication, enhancing the efficacy and reliability of data
transmission in modern communication networks [5]-[6].

B. Analysis of Multicarrier Transmitted Signal

In the framework of multicarrier communication systems,
the transmitted signal in a multicarrier setup can be mathe-
matically formulated as follows:
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In this expression, s, , are the data symbols that are
zero-mean, independent, and identically distributed (i.i.d) ran-
dom variables. These symbols are typically derived from a
Quadrature Amplitude Modulation (QAM) constellation and
are carried on the g¢-th subcarrier during the r-th symbol
period. The term g, .[n] represents the synthesis function,
which is responsible for mapping the data symbols onto the
corresponding signal dimension in the time-frequency grid.

The synthesis function g, .[n], a crucial component in a
Gabor System, is articulated as:
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Here, gi[n] is identified as the transmit prototype filter,
which forms the basis for generating various pulse shapes
through time shifting and frequency modulation. This transmit
prototype filter plays a pivotal role in determining the charac-
teristics of the transmitted signal, such as its bandwidth and
time-frequency localization properties.

The received signal, which is the counterpart of the trans-
mitted signal as per Eq. (1), undergoes various transformations
due to the propagation environment. It can be represented as:
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In this formula, L., signifies the number of multipath
components in the channel, 7; denotes the discrete propagation
delay for each path, and h[r;] is the time-varying channel gain
associated with each path. The term f] = Cf% represents
the Doppler shift, with f. being the carrier frequency, vy the
relative speed between the transmitter and receiver, and c the
speed of light.

The final received signal, considering various practical as-
pects such as symbol time offset §, carrier frequency offset «,
and the presence of Additive White Gaussian Noise (AWGN)
z[n] with variance o2, is given by:
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This equation succinctly encapsulates the composite ef-
fects of carrier frequency offset, symbol time offset, and the
influence of noise on the received signal. It highlights the

complexities involved in the signal reception in a multicarrier
communication system, where factors like channel multipath
effects, Doppler shifts due to mobility, and noise play sig-
nificant roles in determining the quality and reliability of the
received signal [7].

III. GAN ARCHITECTURE FOR MULTICARRIER
SIGNALS

A. Introdction to GAN

Generative Adversarial Networks (GANs) have emerged as
a revolutionary concept in machine learning, particularly in the
realm of wireless communications. Originally conceptualized
by Ian Goodfellow et al. in 2014, GANs consist of two
neural networks—the generator and the discriminator each
being trained to outperform the other. This architecture enables
GANSs to generate highly realistic data, which can be used
in diverse applications ranging from image synthesis to com-
plex signal processing tasks in wireless systems.In wireless
communications, GANs have shown promising applications,
particularly in creating complex, realistic wireless signal en-
vironments for testing and evaluation.

The Gan’s Generator G is a neural network that generates
synthetic samples given a random noise, sampled from a fixed
length vector z, also known as a latent space, from a Gaussian
distribution. G learns to map z to the dataset distribution. On
the other hand, the Discriminator D, also a neural network,
is a binary classifier that discriminates between whether the
input sample is real [output a scalar value 1] or fake [output a
scalar value 0]. The two models are trained jointly in a zero-
sum game. When G fools the discriminator, no changes are
applied to its model weights, while D parameters are updated.
Alternately, when D distinguishes real and fake examples, it
is rewarded, while G is penalized with substantial updates, as
depicted in Fig. 1.

Random Generator Fake
z Sample
Foal
@D | sempe
Real
Data

Fig. 1. The GAN’s architecture

The two models are trained jointly in a zero-sum game.
When G fools the discriminator, no changes are applied to its
model weights, while D parameters are updated. Alternately,
when D distinguishes real and fake examples, it is rewarded,
while G is penalized with substantial updates, as depicted in
Fig. 1. Both the generator and the discriminator have the same
loss function presented in Eq. (5), but the first attempts to
minimize it, whereas the second seeks to maximize it:

O =Eopoia(a)log D(@)] + E.p_(2)[log(1 — D(G(2)))]
5
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In GANs for multi-carrier signals, the discriminator D(x) esti-
mates the likelihood of authentic data = being real. Conversely,
the generator G(z) creates outputs from noise input z, and
D(G(z)) is the discriminator’s estimate of the probability that
these outputs are real. The generator, not having access to real
data, focuses on minimizing log(1 — D(G(z))). However, this
often leads to saturation issues; thus, the generator aims to
maximize log(D(G(z))).

GANSs can generate credible samples but lack direct control
over the types of fake instances produced. This is particularly
challenging for multi-carrier waveforms which are not easily
interpretable by humans.Hence, we explore a class conditional
variant, cGAN, where additional information (like class labels)
is incorporated into the input data. This is achieved by combin-
ing an embedding layer with a fully connected one to integrate
this data as an added feature map. The GAN architecture
for 2x128 1/Q signals includes convolutional layers for both
discriminator and generator, with specific kernel sizes and
strides, and utilizes techniques like Leaky ReLU, dropout,
and Adam optimizer for training. The generator transforms
latent space points into plausible I/Q vectors, using dense and
upsampling layers, culminating in a final output layer with a
Tanh activation function. An embedding layer is used to map
class labels into distinct vectors.

B. Maths behind GAN

Generative Adversarial Networks (GANs) consist of two
main components: the Discriminator and the Generator.
The discriminator aims to learn the conditional probability
P(Y|X = z), where X is the input and Y is the output.
Meanwhile, the generator aims to learn the joint probability
P(X,Y).The discriminator is essentially a binary classifier
that distinguishes between real data (X,Y) and generated
data (X,Y). Its objective is to maximize the probability of
assigning the correct label to real data and the correct label
to generated data. Mathematically, the discriminator aims to
maximize:

Proof : Derivation using Binary Cross-Entropy
The binary cross-entropy loss function is commonly used
in GANSs. It is given by:

E(y,§) = — (ylog(g) + (1 —y)log(1 — 7))
Now, considering the two scenarios in the GAN value
function:
e When y =1, § = D(z), and F = log(D(x)).
e Wheny =0, § = D(G(z)), and E = log(1 — D(G(z))).
Adding these expectations, we get the value function:

V(G, D) = Esnpy,[log D(z)] + E.np. [log(1 — D(G(2)))]

This formulation reflects the adversarial nature of GANSs,
where the discriminator (D) and the generator (G) play a
minimax game to achieve a balance.

The training of Generative Adversarial Networks (GANs)
involves an iterative process where the generator and discrim-
inator are updated alternatively. The algorithm consists of two
main loops: an inner loop for updating the discriminator (D)
and an outer loop for updating the generator (G).

o Training Loop:

Fix the learning rate
For each iteration:
Inner loop for D :
- Take m real data samples and m fake data samples

- Update parameters 6 by gradient descent:

Fix the learning of D (out of the inner loop for D )
- Take m fake data samples

- Update parameters 6 by gradient descent:

1
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Here, D(X,Y) is the output of the discriminator for real data,
and D(X , f’) is the output for generated data. Conversely, the
generator aims to fool the discriminator by generating samples
that are indistinguishable from real data. Its objective is to
minimize the probability of the discriminator correctly labeling
generated data as fake. Mathematically, the generator aims to

maximize:

Eq =E % y)op., 108 D(X.,Y)]
In Generative Adversarial Networks (GANs), the value
function V(G, D) is defined as:
V(G, D) = Eanpy,log D(x)] + Eznp [log(1 — D(G(2)))]

Here, = is sampled from the real data distribution Py,
and z is sampled from the input noise distribution P, of the
generator.

For every k updates of the discriminator, update the gener-
ator once.

At optimality, for a fixed G, the value function V (G, D) is
maximized when D(z) = Piaa (2) The value function

max Puaa()+ P (2)°
is given by:
Piaa() ] [ In P (x)
V(G,D) =Eyup,, | 5t |+ By py | ot
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Minimizing V' with respect to G leads to:
1
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Now, consider the Jensen-Shannon Divergence (JS) between

Py and Pg, given by:

1
JS(Pdatm PG) = 5 <KL (Pdala 2 2
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where KL is the Kullback-Leibler divergence. The minimum
value of V is related to JS:

ménV = 2 JS(Pyaa; Pg) — 2In 2

This is minimized when Py,n = Pg, as the JS divergence
is always non-negative.
Therefore, at optimality, Pg = Pjata-

C. Dataset

The dataset is structured with the following dimensions:
first, it encompasses a multitude of samples, with each class
and signal-to-noise ratio (SNR) value represented by 2500
examples. The dataset captures the in-phase (I) and quadrature
(Q) components of signals, resulting in two I/Q components.
The sequence length of 128 signifies the temporal nature of
the data, and it’s worth noting that the dataset encompasses 5
waveform types, including UFMC, OFDM, F-OFDM, GFDM,
and FBMC. Additionally, the dataset exhibits variations in
SNR values, making it a rich resource for the research.
This 5-dimensional dataset serves as the foundation for the
work, enabling us to explore and analyze signals with diverse
characteristics and applications.

D. GAN and CNN Architecture

The discriminator in our GAN architecture serves the pur-
pose of binary classification, determining whether a given
input instance is real or fake. It is constructed with four 2D
convolutional layers, each featuring a kernel size of 4x4 and a
stride of 2, enabling it to capture hierarchical features. Unlike
traditional CNNs, we do not employ pooling layers in our
design. The discriminator’s output layer consists of a single
node, incorporating a Sigmoid activation function to provide
binary classification results. During training, the discriminator
aims to minimize the binary cross-entropy loss, aligning its
predictions with the ground truth labels. To enhance training
stability and prevent sparse gradients, we opt for Leaky Rec-
tified Linear Units (ReLU) with a slope of 0.2. Additionally,
a dropout layer with a rate of 0.3 is introduced to facilitate
improved model generalization. For optimization, we employ
the Adam variant of stochastic gradient descent, configuring a
learning rate of 0.0002 and a momentum value of 0.5.

The generator within our GAN architecture is tasked with
transforming a latent space point into a credible 2x128 In-
Phase/Quadrature (I/Q) vector. To achieve this, we employ
a structured approach, initiating with a dense layer respon-
sible for generating 256 parallel versions of a smaller I/Q
vector, each comprising a 1x8 shape and encompassing distinct
learned features. Subsequently, these vectors are subjected to
transpose convolution layers, known as deconvolution layers,
which encompass both upsampling and convolutional aspects.
The kernel size of these layers is set at 4x4, with a stride
of 2x2, effectively doubling the size of the I/Q vectors at
each layer. The Leaky Rectified Linear Unit (ReLU) activation
function is applied to the output of each layer to introduce non-
linearity into the model. The concluding layer of the generator

model consists of a 2D convolution layer with a solitary filter.
For the purpose of stabilizing the GAN training process, we
incorporate a Tanh activation function to ensure that the output
values fall within the desired range of [-1, 1]. In parallel, we
employ an embedding layer of size 50 to inject class label
information, with each of the five waveform classes being
mapped to a distinct 50-element vector interpretation.

In our study, we adopted a Convolutional Neural Network
(CNN) model architecture for the classification of filtered
multicarrier waveforms. The CNN architecture comprises four
layers, organized into two convolutional layers followed by
two fully connected dense layers. The first three layers utilize
Rectified Linear Unit (ReLU) activation functions, while the
final layer employs a SoftMax transfer function for classifica-
tion. To tailor the network’s hyperparameters to our specific
dataset, which includes six classes, including a novel class
of random data in addition to the investigated waveforms,
we configured the following settings: In the initial convolu-
tional layer, we employed 128 filters with a size of 1 x 3.
Subsequently, in the second convolutional layer, we reduced
the number of filters to 64, each with a size of 1 x 3. The
dense layer was configured with a length of 128 neurons,
corresponding to the size of our dataset’s features. The output
layer was structured with one neuron dedicated to each class
label, totaling six neurons to accommodate the multi-class
classification task.

To prevent overfitting and enhance the model’s generaliza-
tion capabilities, we applied dropout regularization after each
of the first three layers. The dropout rate (d,) was set to 0.3.
Additionally, we incorporated an early stopping mechanism
into our training process. This technique helps halt the training
process when the model’s performance on a validation dataset
no longer improves, further mitigating the risk of overfitting.
To optimize the model’s learning process, we employed the
Adam optimization algorithm, an advanced variant of tradi-
tional stochastic gradient descent. These strategies collectively
ensured the robustness and generalization of our CNN model
for accurate classification of filtered multicarrier waveforms,
including the novel class of random data in our extended
dataset.

IV. METHODOLOGY

In our study, we focused on assessing the performance of
Generative Adversarial Networks (GANs) when applied to
filtered multicarrier signals. To gain a better understanding
of GAN performance in this context, we utilized various
simulations and worked with a comprehensive dataset. This
dataset consisted of signals with a fixed symbol length of
Neymbols = 10. We varied the Signal-to-Noise Ratio (SNR)
in the range from —8 dB to 20 dB in steps of 2 dB, and we
ensured that each SNR level had 5000 examples per class.

To maintain consistency in symbol lengths across different
multicarrier waveforms, we kept the number of subcarriers
constant at /N, = 16 for most waveforms, with the exception of
GFDM, where N. = 8 was used. The prototype filters, which
are well-established in the literature and previously studied for
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waveform classification, were employed for signal generation.
Specifically, we used the Root Raised Cosine (RRC) filter with
a roll-off factor 8 = 0.35 for GFDM, the Phydyas filter with
an overlapping factor of K = 2 for FBMC, a Chebyshev filter
for UFMC, and a truncated sinc filter for F-OFDM. The data
symbols were drawn from a Quadrature Phase Shift Keying
(QPSK) constellation.

In terms of additional simulation details, we set the cyclic
prefix length to N./4 to ensure it was greater than the
maximum channel delay, thereby avoiding Intersymbol Inter-
ference (ISI). We introduced multipath channel effects using
the extended typical urban (ETU) model, specifically opting
for the extended typical urban (ETU) model from the Long-
Term Evolution (LTE) channel model. To summarize, our
role primarily involved receiving and working with the
provided dataset, without directly intervening in the signal
design or reception process.

The dataset was received as a Matlab file , whereas we
built the deep learning models in Python, relying on Keras
and TensorFlow libraries, and trained them over the T4 GPU
of Google Colab Pro.

A. Implementing the algorithms and training

We initiate our process with the Convolutional Neural
Network (CNN) classifier. Initially, we load and rescale the
2x128 In-Phase/Quadrature (I/Q) data to a range of [-1, 1].
Subsequently, we label the data into the five distinct sig-
nal types(UFMC,OFDM,F-OFDM,GFDM,FBMC), forming a
vector Y. The architecture of our CNN model includes multiple
layers for feature extraction and classification. In our training
procedure, 80% of the data is allocated for training, while the
remaining 20% is reserved for validation and testing. Prior
to training, the input training data is normalized to achieve a
zero mean and a standard deviation of unity. The CNN model
is trained using 2500 examples per class per Signal-to-Noise
Ratio (SNR) ranging from 1 to 2500, for 100 epochs.

In parallel to our CNN classifier, we implemented the
Generative Adversarial Network (GAN) using the same scaled
data and label information. The GAN architecture includes
the generator, the discriminator, and GAN model. Drawing
inspiration from our previously trained CNN classifier, we
initiated the process by loading and rescaling the 2x128
In-Phase/Quadrature (I/Q) data and arranging the data into
labeled categories. Subsequently, we constructed the generator
and discriminator networks. In the context of this study,
we focused on refining the GAN’s hyperparameters through
a series of simulations. Specifically, we trained the GAN
using the received waveforms, comprising 2500 examples per
waveform for three Signal-to-Noise Ratio (SNR) values: 20
dB, 18 dB, and 16 dB. The training regimen spanned 100
epochs, with periodic saving of the generator model every 10
epochs.

B. Evaluation Metrics

Evaluating the performance of Generative Adversarial Net-
works (GANs) remains an ongoing research challenge within

the computer vision community. When assessing the effective-
ness of a GAN architecture, various quantitative and qualita-
tive metrics have been introduced to scrutinize not only the
quality but also the diversity of the generated data. In our
specific context, where our objective is to replicate signals
transmitted by legitimate users, we consider the GAN to have
reached convergence when it can successfully deceive the
CNN classifier employed at the receiving end. Leveraging the
capabilities of a conditional GAN, we introduce the following
key metrics:

« Probability of Global Correct Classification (Py..):

NCC
Pyee = Nj x Ny, ©
Here, N,, represents the total count of waveforms utilized
for training the GAN, while N; denotes the number of fake
signals generated per waveform for GAN evaluation. The
N, term corresponds to the cumulative count of correct
classifications across all waveforms. It increments each time
the labels predicted by the CNN classifier align with the
conditional labels used by the GAN’s generator to produce
fake signals.
Additionally, we introduce the Per-Class Correct Classifica-
tion Probability (P,...), defined as:

1 U
Pccc = X7 DPe; (7)

In this equation, N represents the total number of synthetic
signals used for evaluation, and p., denotes the per-class
probabilities reported by the CNN classifier (denoted as p. in
Equation (7)). These probabilities are calculated individually
for each class across the Ny synthetic signals and are then
averaged to obtain the overall Per-Class Correct Classification
Probability (P,..).

In our evaluation process, we incorporate two widely rec-
ognized metrics for assessing the quality and diversity of gen-
erated data: the Inception Score (IS) and the Frechet Inception
Distance (FID) score. These metrics are traditionally applied
to image evaluation, making them valuable benchmarks for
our task. IS measures image diversity and quality, utilizing
the high-performing Inception v3 image classification model.
It calculates conditional probabilities p(y|z) for each image,
and marginal probabilities p(y) by averaging the conditional
probabilities across synthetic images within a group. The
final IS score results from a sum of KL divergences over
all images, with an average across all classes followed by
exponentiation. The IS ranges from 1 to the number of classes
in the classification model. We intend to adapt this concept
by replacing Inception v3 with a CNN model tailored for
filtered multicarrier waveforms classification. Similarly, for
FID, which evaluates real and fake data based on statistical
features, we aim to replace Inception v3 with our CNN model.
We will omit the output layer and extract features from the last
dense layer, calculating their mean and covariance to form a
multivariate Gaussian. Real signals, used during GAN training,
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Fig. 2. Steps and methodology for generating fake signals using a c-DCGAN

will be compared to fake signals generated by the GAN. We
acknowledge the challenges in adapting these image-centric
metrics to signal data, but we are committed to exploring their
potential applicability.

Fig. 2. summarizes our methodology.

V. RESULTS AND DISCUSSION
A. Performance of the CNN classifier

In our study, we trained a Convolutional Neural Network
(CNN) model using 2500 examples per class for each Signal-
to-Noise Ratio (SNR) value ranging from 1 to 2500. Our
objective was to achieve high classification accuracy across all
SNR values, and we successfully obtained an overall accuracy
of 0.992. Figure 3 provides a comprehensive overview of the
CNN’s performance:

a. Fig. 3a displays the CNN’s learning curve, showing the
training and validation accuracy. It illustrates that our model
learned effectively, with a good fit between the training and
validation data.

b. Fig. 3b shows how the CNN’s accuracy changes as we
vary the SNR values. This graph indicates that the CNN’s
performance varies with the SNR, and certain modulation
schemes perform better than others.

c. Fig. 3c presents per-class accuracy as a function of SNR.
Notably, F-OFDM classification consistently outperformed
UFMC, GFDM, OFDM, and FBMC. This suggests that the
CNN effectively captures unique statistical attributes created
by applying filtering to these waveforms, enabling precise
classification of these novel transmission schemes.

d. Fig. 3d illustrates the confusion matrix for all SNR values.
It reveals that there is significant confusion between GFDM
and OFDM, and vice versa. This can be explained by the fact
that OFDM can be considered a special case of GFDM when
the number of subsymbols is set to 1.
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Fig. 3.a. CNN’s accuracy per epoch
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Fig. 3.a. CNN’s confusion matrix

In summary, our CNN model demonstrated strong perfor-
mance in classifying various modulation schemes based on
distinctive statistical features induced by waveform filtering.
The confusion between GFDM and OFDM can be attributed
to the similarity between these two schemes, particularly
when OFDM is treated as a special case of GFDM with one
subsymbol.

B. B. Performance of the GAN

We trained the GAN for 100 epochs, and calculated the
Py and the P, every epoch, then, for every 20 epochs, we
stored the metrics in a table ( Fig. 4.).

Epoch Pgeec Pececec _UFMC Pccc_OFDM Pecce_F-OFDM Pecce_GFDM Pece_FBMC
1] 20 0867 0.80 085 0.50 0.75 0.90
1 40 073 0.85 0.67 0.55 0.78 0.92
2 60 084 0.83 0.69 0.57 0.80 0.93
3 80 080 0.87 072 0.60 0.82 0.95
4 100 0.84 0.90 0.75 0.63 0.85 0.97

Fig. 4. The GAN’s performance

Based on the table which shows the performance metrics
Pgce (Probability of Correct Class) and Pccc (Per-Class Cor-
rect Class) for a Generative Adversarial Network (GAN) over
a series of epochs, we can infer the following:

1. Overall Trend: The Pgcc shows an upward trend as
the epochs increase, which indicates that the GAN’s ability
to generate signals that are correctly classified by the CNN
classifier is improving over time. Starting at a Pgcc of 0.67 at
epoch 20, there is a consistent improvement, peaking at 0.84
by epoch 100.

2. Per-Class Analysis:

- UFMC: The performance for UFMC signal classification
started strong at 0.80 and saw an incremental increase, reach-
ing 0.90 by epoch 100. This suggests that the model is quite
effective in learning to generate this type of signal correctly.

- OFDM: There was a modest improvement in the clas-
sification of OFDM signals, with Pccc starting at 0.65 and
increasing to 0.75. There’s room for improvement, but the
trend is positive.

- F-OFDM: This signal type had the lowest initial per-
formance at 0.50 Pccc, but it shows a steady increase in
classification accuracy, suggesting that given more epochs, the
performance could continue to improve.

- GFDM: Starting at 0.75, the performance saw some
fluctuations but generally improved, indicating that the model
is fairly consistent in generating this signal type.

- FBMC: The Pccc for FBMC is high throughout, starting
at 0.90 and ending at 0.97, which is an excellent classification
rate and suggests that the GAN has a strong ability to generate
FBMC signals that are close to the real signals.

3. Potential for Improvement: The results suggest that while
the GAN is learning and improving its generation of signals
as judged by the CNN classifier, there is still potential for
further enhancement. Training the GAN for more than 100
epochs could likely result in higher Pgcc and Pccc metrics
across all signal types, as there is a clear upward trend in
the results. Training on multiple layers might also allow the
GAN to capture more complex features of the data, leading to
improved performance. However, it’s important to balance this
against the risk of overfitting, where the GAN might generate
signals that are too tailored to the training dataset and may
not generalize well.
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4. Constraints and Limitations: A limitation in the training
was the time constraint, which restricted the number of epochs
to 100. Given more time, the model could have been trained
for a larger number of epochs, potentially leading to a plateau
of performance where further training does not significantly
improve the results, which is a common occurrence in deep
learning models. The inability to run the Inception Score (IS)
and Fréchet Inception Distance (FID) metrics due to their
difficult adaptability to signals as opposed to images is also a
notable limitation. These metrics are standard for evaluating
the quality of images generated by GANSs, and their adaptation
to signal data is not straightforward. The absence of these
metrics means that the analysis relies solely on the CNN
classifier’s ability to recognize the generated signals, which
may not fully capture the fidelity and diversity of the generated
data.

In conclusion, the GAN shows promising results in generat-
ing synthetic signals that are recognized by a CNN classifier.
While performance is good and improving, the full potential
of the model has not been realized due to time constraints
and the challenge of adapting certain evaluation metrics to
signal data. With additional training time, exploration of
more complex model architectures, and development of more
suitable evaluation metrics for signals, there is potential to
achieve even higher performance.

VI. CONCLUSION AND PERSPECTIVES

This study has successfully demonstrated the innovative
application of Generative Adversarial Networks (GANs) in
wireless signal spoofing, specifically focusing on an eva-
sion attack where the adversary transmitter generates forged
signals using a conditional GAN. These signals, based on
advanced filtered multi-carrier waveforms like UFMC, F-
OFDM, GFDM, FBMC, and the traditional OFDM, are in-
distinguishable from intended ones. The effectiveness of this
approach is underscored by its ability to deceive a CNN
classifier designed to differentiate between various waveforms
and random signals. While the classifier readily recognizes
random signal attacks, it often misclassifies those generated
by the GAN, highlighting the model’s sophistication.

Future research should focus on refining the GAN model
to enhance the quality and authenticity of generated signals
further. Additionally, the adaptation of this model to different
types of wireless communication systems and the exploration
of its scalability and robustness in varying network conditions
will be crucial. Future studies should also delve into develop-
ing more nuanced evaluation metrics for wireless signals, like
assessing the quality of power spectral density (PSD) and char-
acteristics specific to each waveform. Moreover, considering
the practicability of GAN-based evasion attacks against CNN-
based detection methods, subsequent studies must explore
defense mechanisms to identify and counteract these attacks.
This exploration will not only refine the technology but also
address potential security concerns and ethical implications,
ensuring responsible use in secure wireless communication
systems.

The continuous evolution of machine learning models and
the increasing complexity of wireless communication systems
present a fertile ground for expanding the applications of
GANSs in this field.
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